
Real Time Shadows, Reflections, and Transparency using a Z buffer /
Ray Tracer Hybrid

Abe Megahed
Hypercosm, Inc.

Abstract:
We describe techniques for merging ray tracing with real time hidden surface algorithms such as the z
buffer algorithm. The technique offers a smooth transition from interactive display with approximate soft
shadows, reflections, and transparency to full ray tracing with all of its associated effects. This is done by
using the ray tracer only for tracing shading rays at the vertices of polygons and using another hidden
surface technique for hidden surface removal in conjunction with Gouraud interpolation.

Keywords: ray tracing, z buffer, Gouraud shading, real time rendering, and real time ray tracing

Author’s Address:
Abe Megahed
2104 Mill Street
Cross Plains, WI
53562

1. Introduction
As computer graphics have evolved, we have seen a schism emerge in rendering techniques between the
so-called ‘real-time’ techniques and the ‘photorealistic’ techniques. This has lead to most interactive
computer graphics having a characteristic look, with diffuse shading and highlights included because they
can be done quickly and easily, but a noticeable absence of shadows and reflections. Photorealistic images,
on the other hand, tend to be characterized by having a lot of reflective surfaces in addition to shadows and
transparency, simply because these effects are possible. The approach we have taken has been to integrate
these techniques in a uniform way so that as faster hardware and multiprocessing become available, we can
have a smooth transition from the traditional z buffer to more realistic ray tracing algorithms.

2. Background
Although the performance of current workstations has increased considerably, they still lack the
performance necessary for real time ray tracing. Several notable attempts have been made at building
massively parallel ray casting machines [NISH83a] [POT89], however, these have been specialized and
rather expensive systems. The problem is basically that we do not have enough computing power to trace
rays at every pixel in an image at interactive rates. So, we must be satisfied by tracing a smaller number of
rays than we would like. If we perform a coarse ray trace and magnify the size of the pixels, an
unacceptably crude and blocky image results. Ray tracing is simply too slow to use as a hidden surface
algorithm. If we replace the tracing of primary rays with another hidden surface algorithm such as the z
buffer, then the ray tracer is used only for the shading. Although this helps considerably, if we trace
secondary rays at every pixel of a reflective object, then the technique will still not be fast enough for
interactive display of useful scenes.

3. The Rendering Algorithm
If we trace rays at select points distributed across the surface of the object and interpolate the color across
the object, then we may only need to trace a few hundred or thousand rays per frame. This can be done at

interactive rates. In addition, we can use high performance z buffer and Gouraud interpolation hardware to
perform the tasks of hidden surface removal and color interpolation, respectively. This is the basis for our
technique. With this technique, we have found that on current workstations, it is possible to compute
shadows, reflections, and transparency in scene with a few hundred or thousand polygons at acceptable
interactive rates.

3.1 Benefits of Interpolation
One of the most striking things about the images that are produced is that the interpolation technique causes
reflective objects to have the appearance of being diffuse reflectors. The same effect causes shadows and
transparency to appear ‘soft’. Previously, this effect could only be achieved through extremely expensive
distributed ray tracing. Although the diffuse reflections, transparency and shadows computed through
interpolation are not physically accurate, they give a close enough illusion of the phenomena to be
convincing.

3.2 Disadvantages of Interpolation
There are two major disadvantages with ray tracing at select vertices and interpolating the color in between.
The first problem is that the appearance of the object is dependent upon the underlying tessellation. The
second problem is that we are using a smooth interpolation to approximate the specular and transmitted
components of the surface of the object which often change very abruptly compared to the diffuse
component. This leads to shading anomalies.

1. Effects of Tessellation
Because we trace rays only at the vertices, the appearance of an object is highly dependent upon
its tessellation. This means that where an object is tessellated more finely, it will appear more
specular and where the tessellation is coarse, the objects will appear dull. In addition, shadows
and transparency will be sharper in regions of high tessellation which does not make sense from a
physical standpoint. There may be ways to combat these effects, such as tessellating overly large
polygons in screen space. It has been demonstrated that this can be done in real-time, for example,
by Silicon Graphics in their early texture mapping systems (VGX).

2. Effects of Sampling
Another disadvantage of the algorithm is due to the sampling nature of the algorithm. Since
specular reflection, refraction, and shadows change very abruptly across the surface of an object, a
reflection passing by a vertex will show up as a brief smear of color, which may appear or
disappear depending upon whether the reflection hits a vertex. This shows up readily during
animations. The problem is inherent with insufficient sampling. We could perform ‘antialiasing’
by casting several rays around the vertices, however, this would diminish the frame rate and the
benefits of interactivity which are prime benefits of the technique in the first place.

4. B-Rep Considerations
The technique is actually more suited to rendering solid models than to rendering surface models for a
number of reasons.

1. Back facing Polygons and Vertices
With solid models, we can ignore back facing polygons and their associated vertices. This
decreases the number of polygons to scan convert and the number of vertices to ray trace by a
factor of two.

2. Interior Surfaces
If a solid model is consistent, it has no surfaces that lie completely in the interior of the solid. This
is advantageous because we can avoid shading (ray tracing) and rendering these surfaces. This has
additional importance because these interior vertices are more expensive to shade since reflected
rays will often bounce around the interior of the object without being able to ‘escape’. This makes
these interior vertices slower to shade than vertices which lie on the exterior surface of an object.

3. Interpenetrating Surfaces
If we use consistent solid models with no interpenetrating faces, we do not have to worry about
shading anomalies that can occur when we have interpenetrating surfaces. To illustrate how these
shading anomalies arise, imagine a sphere and a cone with its apex just a tiny bit inside of the
sphere. When we shade the cone, the vertices at the apex will be in shadow and reflect only the
sphere because they are on the interior of the sphere. When we interpolate the color, the dark
shadow and the color of the reflected sphere will be spread out over the surface of the cone, even
though only the tip of the cone should be affected. This problem may give rise to serious shading
anomalies in models with many interpenetrating objects and coarse tessellation. With solid
models, we can be sure that all of the vertices lie on the exterior of the object and these problems
do not arise.

5. Comparison with Alternative Techniques
All non ray tracing rendering systems are incapable of rendering true reflections and transparency. In
addition, many systems that use the z buffer can not produce true shadows. However, the success and
speed of the z buffer algorithm at hidden surface removal and its conceptual simplicity have prompted
many attempts to shoehorn these additional features into the system. Many of the effects produced by ray
tracing can be simulated through various z buffer techniques.

There are two primary techniques for simulating shadows with the z buffer. The simplest type of
shadowing effect is ground plane shadows. These shadows are created by projecting the object onto the
ground plane and drawing dark polygons where the projections lie. These shadows have hard edges and
are only cast onto the ground plane, which limits their usefulness. A more general solution is available
through shadow mapping. Unfortunately, the shadow maps use a large amount of memory and are prone to
artifacts.

Reflections are often simulated using environment maps, images of the scene from the viewpoint of the
object, which are then mapped onto the object as reflections. Although these look like reflections at first
glance, they do not have the proper geometry for true reflections.

Transparency can be simulated by z buffering machines with special frame buffer hardware for ‘alpha-
blending’, however, the distortions caused by the refraction of light through different media cannot be
accurately simulated.

Although these techniques are very useful in the hands of a skilled and experienced computer artist, they
are not as general purpose and easy to use as a ray tracer. In addition, after these additional features are
added, the initial simplicity and speed of the z buffer algorithm is lost. These same effects can all be
computed simply and precisely through ray tracing. It therefore makes sense to restrict the z buffer to what
it does best, hidden surface removal, and to restrict the ray tracer to the tasks that only it can perform.

6. Conclusions
We have demonstrated the practicality and usefulness of the algorithms described here in a prototype
system. We have found that the inclusion of reflections and shadows in a real-time system not only
contributes to a better understanding of spatial relationships, but also increases the gamut of possible
surface appearances. While this technique may not be appropriate for every real time application, we have
found that in certain circumstances, it can be very effective.

Figure1: An image for which
the ray tracer and shading model
have been applied at every pixel

Figure2: An image that has been
generated using the z buffer to
scan convert polygons and the
ray tracer to compute the shading
at every face

Figure 3: An image that has
been generated using the z buffer
algorithm to scan convert
polygons, Gouraud shading to
interpolate the colors between
vertices, and the ray tracer to
compute shading at every vertex

